If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+37x+320=0
a = 1; b = 37; c = +320;
Δ = b2-4ac
Δ = 372-4·1·320
Δ = 89
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(37)-\sqrt{89}}{2*1}=\frac{-37-\sqrt{89}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(37)+\sqrt{89}}{2*1}=\frac{-37+\sqrt{89}}{2} $
| 1,000(x–2)=75,000 | | 45+x=2x+20 | | x^2+35x+320=0 | | 10x=4x+150000+0 | | x(-4-4x)+12x=0 | | 5-x=35 | | x*1.32*1.05=71.43 | | 4a−3=21 | | (3/4)(8+4x)-(1/3)(6x+3)=9 | | x*1.32*0.05=71.43 | | 5+11x=-204 | | -10x-11=-251 | | 5(x-1)+5=7+x(1-2x) | | 6x-9-2(1-x)=x-9 | | x*1.32*1.4=71 | | ¡(x)=7 | | a+2/5=3 | | 2x/15-x-6/12-3x/20=3/2 | | 3(X-2)/4-x-3=4/4 | | 3x/2-10=11 | | 3(x+2)/4=4 | | 3x12-10=11 | | 5(x-2)+2x=x+32 | | x*1.32*(1.4)=71 | | (7z/4)-(2/3)=(14/6)+(3z/4) | | x^2+1=(7x^2/9)+3 | | Y–3=5x+10 | | x*1.4=100 | | 3(x-4)=4(2x=1) | | x^2+1=7x^2/9+3 | | 4p+5=p-10 | | 2(x+2)+6=62-4x-3-x |